Hi Community,
Description:
I have a data set around 4 - 5 Million documents, where I need to configure Full Text Search Capability with minimum response time.
I configured the FTS index as below.
"name": "full_text_index",
"type": "fulltext-index",
"params": {
"mapping": {
"types": {
"_default.native": {
"enabled": true,
"dynamic": true,
"default_analyzer": "standard",
"properties": {
"text": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "text",
"type": "text",
"analyzer": "simple",
"store": false,
"index": true,
"include_term_vectors": true,
"include_in_all": false,
"docvalues": false
}
]
},
"tenant": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "tenant",
"type": "text",
"analyzer": "keyword",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": false
}
]
},
"status": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "status",
"type": "text",
"analyzer": "keyword",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": false
}
]
},
"locale": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "locale",
"type": "text",
"analyzer": "keyword",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": false
}
]
},
"lastUpdateTime": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "lastUpdateTime",
"type": "number",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": true
}
]
},
"productIds": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "productIds",
"type": "text",
"analyzer": "keyword",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": false
}
]
},
"id": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "id",
"type": "text",
"analyzer": "keyword",
"store": false,
"index": true,
"include_term_vectors": false,
"include_in_all": false,
"docvalues": false
}
]
},
"summary": {
"enabled": true,
"dynamic": false,
"fields": [
{
"name": "summary",
"type": "text",
"analyzer": "simple",
"store": false,
"index": true,
"include_term_vectors": true,
"include_in_all": false,
"docvalues": false
}
]
}
}
}
},
"default_mapping": {
"enabled": false,
"dynamic": true
},
"default_type": "_default",
"default_analyzer": "standard",
"default_datetime_parser": "dateTimeOptional",
"default_field": "",
"store_dynamic": false,
"index_dynamic": false,
"docvalues_dynamic": false
},
"store": {
"indexType": "scorch",
"kvStoreName": ""
},
"doc_config": {
"docid_prefix_delim": "",
"docid_regexp": "",
"mode": "scope.collection.type_field",
"type_field": "type"
}
},
"sourceType": "couchbase",
"sourceName": "Sample",
"sourceUUID": "be04daad7edfa09f20ecf781c0817483",
"sourceParams": {},
"planParams": {
"maxPartitionsPerPIndex": 1024,
"numReplicas": 0,
"indexPartitions": 12
},
"uuid": ""
}
Document Description:
tenant, status, locale are string attributes where I need a full match, hence used keyword analyser
productIds is list of IDs where I need a full match, hence used keyword analyser
lastUpdateTime is long value where I need to query by range and sort in descending order
Id is a string, where I need to query for full match or a partial match as a wildcard like suffix match (Ex: *documentId)
text and summary are text attributes where I need to match phrases or normal word match.
I have created index as above screenshot with index partition as 12 without using any custom analyser of filter.
Search Query:
{
"query": {
"conjuncts": [
{
"disjuncts": [
{
"wildcard": "*{{searchText}}",
"field": "id"
},
{
"match_phrase": "{{searchText}}",
"field": "text"
},
{
"match_phrase": "{{searchText}}",
"field": "summary"
},
{
"match": "{{searchText}}",
"field": "prod"
}
]
},
{
"term": "abc-123",
"field": "tenant"
},
{
"disjuncts": [
{
"term": "en",
"field": "locale"
}
]
},
{
"disjuncts": [
{
"term": "Approved",
"field": "status"
},
{
"term": "Rejected",
"field": "status"
}
]
},
{
"field": "lastUpdateTime",
"min": 1603799414000,
"max": 1730029814000,
"inclusive_min": true,
"inclusive_max": true
}
]
},
"sort": [
"-lastUpdateTime"
],
"size": 10,
"from": 0
}
My query looks above, the {{searchText}} place holder will be replaced with my dynamic input from UI and other query attributes are filled based on user type and filter params.
Problem:
Currently with above index configuration and querying for 4-5 million documents I am able to get the data in 400ms - 500ms. Even though I do not store any data in index for retrieval as it increases my index size in disk.
I need to get response within 50ms. Is is possible to achieve such low latency. If yes, Can anyone help me here to get query data with faster retrieval.